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ABSTRACT 

A simple step-by-step technique is presented for the numerical integration of certain 
difhcult-to-obtain subdominant solutions of systems of ordinary differential equations. 
These subdominant solutions can be entirely obliterated when integrating with standard 
numerical techniques if the ever-present error components of the dominant solutions, 
usually characterized by a strong exponential dependence, increase rapidly in the 
direction of integration. 

The technique presented here, to overcome this difficulty for a fourth-order system, 
can be made quite efficient by proper use of a functional resembling the linear combina- 
tion of the Wronskians of two distinct second-order differential equations. This “partial 
Wronskian” gives a useful piece of global information about the desired subdominant 
solution which permits the error components of the growing dominant solution to be 
removed numerically long before these errors have grown unacceptably large. 

The technique is presented initially via a specific example taken from the theory of 
resistive instabilities in an inhomogeneous hydromagnetic fluid. More general problems 
are discussed briefly to indicate to the reader ways in which the ideas and methods 
contained in this paper may be modified to treat problems for which a partial-Wronskian 
functional with the desired properties cannot be found. 

I. INTRODUCTION 

The techniques of singular perturbation theory [l] and the closely allied phase- 
integral methods [2] enter’ into the analysis of many physical problems. Studies of 
nearly inviscid plane parallel flow governed by the Orr-Sommerfeld Equation 
([3], [4]), studies of the To&s-Dattner Resonances in plasmas with small electron 
thermal velocities ([5], [6], [7]), and studies of the resistive instabilities of a plasma 
([8], [9], [lo]) all utilize these techniques to treat differential equations whose 
highest derivative terms have an asymptotically small coefficient. 

The following fourth-order equation helps to illuminate some of the basic 
elements that these problems have in common and is a good introduction to the 
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numerical difficulties which often frustrate determination oE s~bd~rn~~a~t solu- 
tions. The equations 

@ d4U -&- + (x” + E2qf(x) $.g + g(x) u = 0, 

wb) = g kt4 = 

specify a. well-posed, two-point, boundary-value problem for the eigenva~~es 
h,(i = 0, l,...) and the eigenfunctions U(& ; E, x).” 

It should be clear that cases where E Q 1 should be tractable, at least in part, by 
some simplifying asymptotic approach. In this regard, one treats the foils 
independent solutions of Eq. (la) as functions of both c: and x (and, of course, A) 
even though E is usually fixed in any realistic physical application. One then seeks 
asymptotic expansions of the eigenfunctions to leading order in E which are uni- 
formly valid for all x in the interval -a to +a. This approach leads to an “outer- 
inner-outer-connection” problem in which the interval -a < x < a must split 
into two entirely different types of regions. 

The first type of region is an “outer-limit” region (Qseen-limit El]) where the 
derivatives of U(h; 0, x) with respect to x remain of order unity-or are at least 
asymptotically smaller then 0(1/~). The outer-limit equation for U(h; 0, x), 

is singular at x = 0 by our previous assumptions. Hence a single outer region 
cannot span the entire interval -a < x < a because derivatives of hi become 
larger than 0(1/e) for 1 x 1 sufficiently small. 

This singularity signals a region of the second type near x = 0, an c6~~~~~-limitp~ 
region (Stokes-limit[l]), where the fourth-derivative term in E . (la) shoufd not 
be neglected to leading order. In this region, characterized by j x / 5 E, the solutions 
U(X; E, X) and also Eq. (la) are more naturally written as functions of A, E, and 
x* = X/C The inner-limit equation for U(X; 0, x*) is then 

In the asymptotic sense, x * becomes infinite before x = EX * becomes finite. 
Simplification of the original eigenvalue problem occurs because we can now 

treat the simplified fourth-order equation (la”) as an eigen-equation with two 
boundary conditions specified at x * = two at x* = - co. ~~rnp~~~ca~~~~s 

1 For simplicity we assume that 0 < a - O(1) and e > 0. We abo assume that f(x) and g(x) 
are contiiuous, differentiable, and nonzero for all x in the interval --a to a. 
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appear in three ways. The parameter c does not appear in Eq. (la”), the coefficients 
f(0) and g(0) no longer depend on the independent variable x* to this order, and 
the dependence of the eigenfunctions on the boundary condition in the expansion 
parameter E, and on f(x) and g(x) appear only through the boundary conditions 
on U(h; 0, x*) at x* = &co2 

In the inner region there are four independent solutions of Eq. (la”) which are 
linear combinations at x* = 4= co of four independent asymptotic expansions. 
Two of these asymptotic solutions, which we call “dominant” or, more descrip- 
tively, “exponential” solutions, have no counterparts in the E = 0 outer-limit 
equation (unless one counts 0 and co as meaningful solutions). Therefore, unifor- 
mity of the final solution of Eq. (la) over the entire interval --a < x < a requires 
that U(X; 0, x *) contain none of the exponentially increasing solutions at f co. Any 
finite amount of the exponentially small solution may be present, however, as this 
solution matches asymptotically onto zero in the outer regions. 

The other two solutions of the inner-limit equation, which we call “subdominant” 
or, more descriptively, “intermediate” solutions, are neither exponentially small 
nor exponentially large for large / x* /. These two solutions are the extensions into 
the inner region of the two independent solutions of the outer-limit equation. The 
two remaining boundary conditions on the final inner-limit solution, which com- 
pletes the specification of the simplified eigenvalue problem for h, specify the ratio 
of expansion coefficients of the two intermediate-solution asymptotic forms at 
both x* = + co and x* = - co. These two homogeneous boundary conditions 
ensure a smooth connection between the inner-limit eigenfunction and the two 
outer-limit solutions which satisfy Eqs. (lb). 

These four homogeneous boundary conditions on eigensolutions of the fourth- 
order equation (la”) now determine a discrete spectrum of eigenvalues h. From 
another point of view, more appropriate to numerical analysis, one specifies three 
boundary conditions and gives X, seeking the fourth boundary condition, the ratio 
of intermediate-solution a.symptotic forms, at either x* = + co or x* = - 03. 
This numerically computed ratio is then compared with the required ratio to see 
if the h value chosen is indeed an eigenvalue. 

When Eq. (la”) can be solved analytically, exact3 eigenfunctions and eigenvalues 

2 The four boundary conditions on the inner-limit solutions at co are derived from conditions 
for smooth connection to the outer-Limit solutions. This connection, performed at x* = i cc 
in the inner region, connects across x = f0 for the two outer regions. However, one may also 
think of this connection as being performed, for a specified nonzero E, at any two points lying 
within two narrow regions at the outer extremities of the inner region, 1 < j x* / < l/6 (or, 
correspondingly, at the inner edges of the two outer regions). 

3 One should not forget that the eigenvalues of the simplified inner-limit eigenvalue problem 
are only the leading terms of the exact eigenvalues to Eqs. (la) and (lb) which have been expanded 
in asymptotic series in E. 
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may be found by forming appropriate linear ~omb~~at~o~s of the four independent 
solutions. It is not a general property of fourth-order ordinary ~iff~re~t~a~ equations 
with variable coefhcients, of which Eq. (la”> is a particularly simple exa 
they be fully soluble in closed form. One may be reduced to solving even t 
fied eigenvalue problem numerically. 

Unfortunately, numerical integration of Eq. (la”), or a similar ~~~er~~~rn~~ 
equation, for the important intermediate sohttions is often hampered by the exist- 
ence of exponential solutions. This “exponential problem” [9] arises because one 
of the two exponential solutions increases rapidly in the direction of integration of 
Eq. (la”>, regardless of which direction is chosen. Any numerical represe~tat~~~ 
of the intermediate solutions will contain relative error components of this rapidly 
mcreasing exponential of at least order 6, the relative round-off error of the 

articular computer in use. This increasing error ~orn~o~e~t can ~o~tarn~~ate the 
mtermediate solutions beyond recognition in just a few ~~tegrat~~~ steps when the 
exponential dependence on x* is strong.4 

In some simple cases the exponential problem can be overcome by 
equation methods or the like which utilize a global property of the solu 
as symmetry or simultaneous utilization of both 
however, a lack of symmetry or of true boundary conditions at both 
inner region, or posing the problem as an initial-value problem, makes 
specialized methods unworkable. 

We present a simple step-by-step technique which can be use 
integrating packages for ordinary differential equations. This 
have called the partial-Wronskian technique, utilizes previou 
information about the exponential solutions, but this infor 
applied Iocally or quasi-locally insofar as the ~nt~~~~~~at~ solutions 

not know, for instance, a symmetry relation or 
expansion for x* > 1 of the desired intermediate soiutio 
posed, as initial data, for x * < - 1. 

In Section II we present this technique through analysis of a spec 
ur technique is made more efficient and elegant in s example by empI 
nctional resembling a linear combination of the of two 

second-order differential equations. We show how the t 
even when no such partial-Wronskian functional can be 

Rather than present a rigorous and detailed treatment 
have only sketched in the mathematical details, which are directly relevant I 
a rather restricted class of problems, and have co~~~~tra~ed on 

4 In this sense we have been calling both exponential solutions “dominant” because their 
magnitude varies strongly with x *. Here the magnitude of these two solutions in any region 
is not as important as the rate of change of this magnitude with 9. 
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ideas and methods leading up to the exponential problem and concerned directly 
in its resolution. We hope that this emphasis on explanation and generality will 
interest the reader in using and improving our technique for other problems, 
employing any one of the excellent packages which exist for integrating ordinary 
differential equations. 

II. THE PARTIAL-WRONSKIAN TECHNIQUE-AN EXAMPLE 

We present the technique by treating an example taken from a study [lo] of the 
eigenmodes of an inhomogeneous, slightly resistive, magnetohydrodynamic fluid 
in a finitely sheared magnetic field. A two-point boundary-value problem treated 
there was reduced to an “outer-inner-outer” connection problem governed by the 
following fourth-order set of inner-limit equations: 

y is assumed to be hnite and real, a given parameter in the problem, and the 
eigenvalue h is of order unity and may be complex. 

Since these two equations have resisted solution in closed form, we seek uniformly 
valid approximations to the two intermediate solutions of Eqs. (2) for given values 
of y and h for all [(-co < [ < co). In the two separate regions 1 Q ] 5 1 < co, any 
solution of Eqs. (2) can be expanded as a linear combination of four independent 
solutions. The two intermediate solutions have asymptotic expansions whose 
leading terms are 

6 In this paper, cases where my is integral are completely ignored since these rather 
special values of y may require a logarithmic solution in place of one of the two asymptotic 
forms given in Eqs. (3a) or (3b). In addition, we assume that h does not take on one of the discrete 
values, hl = oz2, where Re(o,) > 0 and d = 03 -I- I + $ f d(B + I + $1 - Y for B = B+ or 
j- and for I = 0,2,4 ,... . In [lo] it is shown that certain of our assumptions concerning the 
nature of the two intermediate solutions are wrong for these specific values of X. For these 
particular values, in fact, the outer-inner-outer connection has been performed analytically. 
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The two exponential solutions have asymptotic expansions starting with the 
terms 

ib~,(E> - 5”’ w?P/(W’21, b+@ &! -,(-*+,A @cl 

s. (3~) and (3d) we use the definition 

The four asymptotic expansions for 5 large and negative are found from the 
positive-f solutions, Eqs. (3), by using the intrinsic symmetry of Eqs. (2). 

We stress that the solutions (3) are only asymptotic expansions of exact s~~~t~~~s~~ 
Each of the four exact solutions, in general, matches onto a hnear co 
the four expansions (3) for E 2 1 and onto a different Iinear combinatio 

owever, only the expansion coefficient of the truly dominant asymptotic e~~~~s~~~ 
can be known in these linear combinations because the error in the ex~~~~~t~~~~~ 
large asymptotic form is as large as or larger than the other three s~~~t~~~s in 
principle. This asymptotic dominance, as we will show, is not only the source of 
the exponential problem but also the tool by which it is resolved. 

The growth factor of the exponential expansions (3~) and (3d), 

measures the approximate change in magnitude of the ex~one~ti~ so~~t~~~s 
between the points & and f2 . This growth factor is particularly vicious when 
j h / < 1. If, for example, we integrate from t1 = 12 to t2 = 13 with A = 0.01, the 
two exponential solutions change magnitude by a factor of order e~~~~~~) while 

6 Let A({) denote a vector whose four components, ;lA(Q, #a(f), +&)), c>(c), are the values of 
one of the independent solutions of Eqs. (2) for a given y and X. A(&,) contains sufficient informa- 
iion to determine A(f) for all e in principle by integrating Eqs. (2) from & to f. If we have at 
our disposal four independent solutions of (2) for given X and y--call them A,(&, A,(& A&), 
A&-any solution of Eqs. (2) can be written as 

and the expansion coefficients ci can be determined when a(&,) is given. 
In addition to exact solutions, we wish to discuss both asymptotic expansions of exact so?utions 

and numerical approximations to exact solutions. The former we denote by a tilde, the latter 
by a bar. Thus a(f) w Z(E) in some appropriate asymptotic sense and a([) w H(f) in the numerical 
sense. 
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the intermediate solutions remain of order unity. A computer would need more 
than fifty decimal digits of precision to make the relative round-off error 6 of order 
exp(-125) in order that initial error components of the spurious growing expo- 
nential solution be kept small. 

The technique developed to avoid the exponential problem involves swimming 
with the tide rather than against it. When seeking the fastest growing solution, 
direct uncorrected numerical integration is adequate since all spurious components 
of the other three solutions, which arise from numerical error of one sort or another, 
are suppressed relative to the fastest growing solution during an integration step. 
Once we have found the two rapidly varying exponential solutions quite accurately, 
they can be used in a simple step-by-step procedure to “orthogonaIize” the numeri- 
cally determined intermediate solutions against the exponential problem. Our 
technique for this specific example employs a functional, which we call a partial 
Wronskian, derived directly from Eqs. (2). 

= constant, 

where a(t) and b(t) are any two solutions of Eqs. (2) for given y and h. Clearly 
W,, = Oand W,, = -W,,. 

Let S(f) and L(E) be any two solutions of Eqs. (2) which are normalized so that 

WSLG3 = 1 (-co < 5 < a). Pa) 

The other two solutions, denoted by 11(<) and I,([), can then be chosen so that7 

w,s = w,,s = W&L = W&L = 0, 

(for -cc < < < co). 
(7b) 

Now let S(f) be the solution of Eqs. (2) which is exponentially small, varying 
asymptotically as Eq. (3d), for [ > 1. The numerical approximation S(t) can be 

’ It is clear that an I&) and an I,(t) satisfying (7b) always exist, but the partial-Wronskian 
functional itself, Eq. (7), is only particularly useful when the asymptotic expansions of Eqs. (3) 
satisfy Eqs. (7b) term by term with S and L replaced by 2, and %- and with I1 and I2 replaced 
by fi+ and I%- . Although the asymptotic expansions do satisfy (7b) for our present example, 
the usefulness of our technique is not restricted to such cases. A generalized problem, where 
a simple functional such as (7) with asymptotic expansions satisfying (7b) need not be derived, 
is treated briefly in the next section. 
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found accurately by integrating Eqs. (2) from large positive E, towar 

this is the direction of growth for S(f).8 
Similarly, Z(t)>, our approximation to I([), is made exponentially small for 

and found for f > -t, by integration of Eqs. (2) toward + co. For both 
the numerical starting values, S([,) and Q&J, are taken directly from 

Eq. (3d). After integration, the two functions thus are normalized to 
ensure that JVs&) = 1. 

To tabulate I,(e) and I&), adequate numerical approximations to the two inter- 
mediate solutions, the functions s(f) and e(f) and the functional W are used i 
the following step-by-step procedure. 

Suppose we know the four values f(t1).9 

(1) Choose an integration step length Se > 0 such that G(E, + St, [J << l/S. 
(2) Choose a positive integer N such that G(.$, + Nat, el) 3 l/S. 
(3) Integrate Eqs. (2) from El to & = 5, + St using I(el) as initial values. 

Employ any ordinary differential-equation integration package which satisfies 
appropriate error criteria and then retain these new values as a trial inter 

(4) Integrate forward another N - 1 steps from 5, to t, = fa $ N8[ using 
*(&J as initial values. 

(5) The accurate approximation to I(E) is then determined at f2 by the relation 

f(t2) = I*(fz) - ~S:i*Gts) (81 
(6) The entire process, starting at step (l), is repeated over and over until 

5 = +& is reached. The solution I(f,,) can then be treated entirely in terms of the 
appropriate linear combination of asymptotic expansions for E > 6, . 

This technique of corrected integration was actually used to solve the ei~e~~v~lne 
problem given by Eqs. (2) with appropriate boundary ~onditions~ Figure I shows 
a typical computation with and without the correction steps (4), (5), and (6). 
X = 3.0, the exponents of the exponential solutions are not particularly large-see 
Eq. (6)-but the exponential problem is so severe, even at its mildest, that the 
step-by-step corrections are absolutely imperative. (ln [lo], meaningfn~ ~orn~~~a~ 

8 We pick tO > 1 to be so large that all four asymptotic expansions (3) for j [ / > to are mire 
accurate than the relative nnmerical error 6 from round-off and truncation. Then we need consider 
only the region - & < 6 < 5, numerically because the appropriate linear combinations of 
asymptotic expansions are entirely adequate to describe the numerical approximations for 
I5 I > &I. 

v The procedure is initialized by setting f&J = fi+(&,) and &(E,J = -(&) from Eqs, (3a) 
and (3b). We use f to denote either of these two approximate solntions and note that L(t) is s&e 
undesired exponential solution, because we intend to integrate toward f = + co. 
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Y = 3/16 

x = 3.0 

S[ =0.05 

Direction of Integration 
b 

pw 
Uncorrected , i , h-(0 

/ Corrected 

FIG. 1. Corrected and uncorrected integrations testing the partial-Wronskian technique. 
Without correction the numerical solution, #H-@), departs increasingly from the desired inter- 
mediate solution and rapidly becomes dominated by the undesired exponential solution, #&). 

tions were carried out for X as small as 0.03.) Without correction, the numerical 
solution deviates rapidly from the intermediate solution and quickly approaches 
the exponential solution, L(f). With correction, however, certain global checks 
indicate that the relative overall errors were kept as small as 10m3 to 10m4 for 
--co<~<co. 

III. THE PARTIAL-WRONSKIAN TECHNIQUE-AN EXPLANATION 
AND GENERALIZATION 

An understanding of why the technique works is prerequisite to applying the 
technique to other problems for which a useful partial-Wronskian functional is 
not forthcoming. In such problems it will be necessary to derive a modified correc- 
tion formula to replace Eq. (8), but this should always be possible whenever 
uncorrected numerical integrations suffer a severe exponential problem. 

Consider the steps which lead up to and utilize the correction formula (8). At 
.$ = E, the numerical trial solution I*((,) is a linear combination of all four exact 
solutions. We write this combination as 

f*(&) = I@,) + ~“M2) + *-* , (9) 

where the two exact intermediate-solution components are combined in I((,) and 
where the S@,) component is neglected because S is decreasing in the direction of 
integration. Because L(e) has increased rapidly during the integration of step (3) 
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above-from t = c, to f = .$,---the major numerical error, S*L(t,), is no longer 
of order S, the relative computer round-off error, but has become of order 
SC@,, El). This increased relative error is now much large an order S (but still 
much less than unity if St = zJ, - t1 is properly chosen). Ither, for ~~~t~~~~~ 
integration of I* beyond 6, , as in step (4) above, S* is essentially constant, varying 
by no more than relative terms of order l/C(tI ) 4), since the spurious ex~~~~~t~~~ 

component has already become dominant. 
The entire point of our technique, therefore, is to determine 6” in Eq. (9) and then 

to reduce the error in I* back to relative order 6. The metho of determ~~i~~ S* is 
relatively unimportant. 

To find S*, step (4) is carried out. By the time ,$ = t3 is reached, G(t, : <,) > l/S, 
ominated by the exponential solution 

IIn the specific example of the last section we were fortunate to have the ~u~~t~o~a~ 
W available so that 6” could be extracted explicitly by forming the partial 
kian, 

Wsi*(fz) W S*ElJ&(f3) 623 S”. (lob) 

Thus it should now be obvious that Eq. (8) is nothing more than the s~bt~a~t~o~ 
from the trial intermediate solution of the exponentially increasing er 
before it has grown unacceptably large. We stress that W plays a useM 
necessary role in the example chosen. The integer N of steps (2) and (4) can 
in any problem where a functional with the properties of W can be constrwte 
Thus W permitted us to determine S * and exorcise the error terms long before the 
became large, a saving of many unnecessary integration steps. 

In the absence of a functional with the properties of VV, Nmust be larger t 
unity, and Eq. (lOa) must be used to find S*. Thus 

6” w !J&>/$u&) M h*(&V4&J - ... * 

The value of S* from Eq. (1 l), which can be use 

(11) 

to replace Eq. (8) entirely, is just as accurate as the value from Eq. (1Ob)~ ah 
it does take longer to evaluate. 

Et is remarkable, perhaps, that S * can be accurately determined precisely because 
there is an exponential problem rather than in spite caf it. The source of the 
difficulties also provides the means by which the difficulty may be overcome. 
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To generalize Eq. (2) to a fourth-order system, where a functional with all the 
properties of W is not available, consider, for example, the equations 

(13) 

in which we assume that all of the coefficient functions in Eqs. (13) are of such a 
nature that an exponential problem exists, 

We again expect no difficulty in determining two solutions-s(t) and r(f)- 
which are exponentially small for [ > 1 and t < 1, respectively. These can be 
determined accurately, in fact, even when the four asymptotic expansions for 
1 < 1 3 ,.$,, > 1 are entirely unknown. 

Then, using Eq. (12) in place of(S), the two intermediate solutions can be deter- 
mined in the region 1 t / < & by the step-by-step technique outlined above. In cases 
where the intermediate-solution asymptotic expansions are unknown for 1 5 I > f. , 
starting values for I(--&,) can easily be determined numerically. Let us set 

I*(43 = (ho, 0, 0) 

provisionally [(#, $, 4, 95’) as indicated earlier]. This defines a solution function 
containing both s(t) and &$), as well as some linear combination of the two inter- 
mediate solutions. It can therefore be written as 

~*~-LJ = f(-to:,) + &%50> + &wto>. (14) 

As in our earlier discussion, & and 8, can be determined by integrating I*(-&,), 
first to the left and then to the right of -[,, . Using the known functions 3 and i;, 
the component of I*(--&), which is a pure intermediate solution, can be isolated 
by extracting both of the exponential terms. A second independent intermediate- 
solution starting vector can be found, as above, by provisionally settinglO 

I*(-40) = (0, LO, 0). 

To demonstrate this generized technique for extracting subdominant solutions 
we have treated a simple example which is both analytically soluable and subject 
to the exponential problem. The two equations 

(15) 

I0 In both of these initial value determinations we ignore the possibility that (1, 0, 0,O) or 
(0, 1, 0,O) is proportional to one of the two exponential solutions. 



DETERMINATION OF SUBDOMINANT SOLUTIONS 41 

ave four independent solutions, 

311dO = ebS, 

$h&> = ax bsf, 

e approached Eqs. (15) numerically, proposing to integrate the solution $B~(‘) 
from & = -4 to 5 = 14. We set b = +I0 so that the large sol 
a factor 2 x IQ4 for each unit of t integrated in the positive-t 
introduces an exponential problem. 

This example is particularly illuminating because we chose to use the generalized 
technique even though a partial Wronskian exists for this problem. Thus we 
employer overintegration, that is, integration far enough past the desire 
tion po o permit the component of the large solution, exp(ICQ to grow mud: 
larger t the desired subdominant solution, sin(lOX). 

The integration was done using an extrapolation-integrator deve 
the authors and N. K. Winsor of the Princeton Plasma Physics 
relative error tolerance of 1 in lo5 was required of the integrator. 
equations (15) were integrated first from f = -4.0 to ,$ = 6.0 usi 
tions appropriate to the large solution, Q!J&) = exp(lOX). The integration was then 
repeated for the desired subdominant solutions The trial solution after the 30th 
step, each of length 0.1, was then divided by the numeric 
solution at that point to give 6 * of Eq. (11). The first 10 steps were then correct 
and the corrected values of #&) at the tenth step were used to restart the pro 

ure. 
Figure 2 shows the results. The dashed lines show segments of t 

~veri~tegratio~s that were performed, the trial integrations of Step (4) 

--- Uncorrecied -Corrected 
/ J 

-2 -I 

tL 

I i 

FIG. 2. Corrected and uncorrected integrations demonstrating the generalized partial 
Wronskian technique. Without correction the numerical solution (dashed Iines) departs 
increasingly from the exact solution, sin 10X. 
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function grows rapidly as the error component, exp(lO& takes hold. The solid 
line is the corrected numerical approximation to z+&--([) = sin(lOX). At E = f4, 
not shown in the figure, there were still between four and five decimal digits of 
precision in the corrected numerical approximation z,&&$). 

Although our partial-Wronskian technique in its most elegant and efficient form 
might seem to apply to only a limited class of eigenvalue equations for which a 
functional analogous to W with the required properties can be found, the baser 
form, which requires extended sub-integrations to determine S* for each integra- 
tion step, seems to be very general indeed. We have only scratched the surface here, 
leaving undiscussed many relevant questions-such as extension to higher-order 
systems, analysis of error accumulation, and optimum step lengths. Rather than 
in-depth analysis, our goal has been to present the basic methods and ideas of the 
technique in an understandable way. We hope that the reader will find the oppor- 
tunity and inclination to attack other problems using these ideas. 
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